— . — e .

AD=A0QG0 092 FLORIDA UNIV GAINESVILLE DEPT OF INDUSTRIAL AND SYS--ETC F/6 12/2
EFFICIENCY IN INTEGRAL FACILITY DESIGN PROBLEMS.(U)
AUG 78 L 6 CHALMET» R L FRANCIS: J F LAWRENCE DAHCO4=75=G= DISD '
UNCLASSIFIED RR=-78-11 ARO=12640.32-M

- EEEEEENEEE
IIIIIIIIII

END
DATE
FILMED

12-78 i

DOC




16
==

|.4

22 s







I

B s uwW;mp,mm

@I

EFFICIENCY IN INTEGRAL FACILITY DESIGN PROBLEMS

Research Report No. 78-11

by

ADA0 60092

Luc G. Chalmet*
Richard L. Francig®#+
James F. Lawrencet

b‘ August, 1978
e
O
, &
L
v —J
——
[ WO
**Department of Industrial and Systems Engineering

g University of Florida
= Gainesville, Florida 32611

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This research was supported in part by the Interuniversity College for
Ph.D. Studies in Management Sciences (C.I.M.), Brussels, Belgium; by
the Army Research Office, Triangle Park, NC, under contract number
DAHC04-75-G=0150; by a National Academy of Sciences<National Research
Council Postdoctorate Associateship; and by the Operations Research
Division, National Bureau of Standards, Washington, DC.

THE FINDINGS OF THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL

DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY OTHER
AUTHORIZED DOCUMENTS.

*Catholic University of Louvain, Heverlee, Belgium.

+Operations Research Division, Center for Applied Mathematics, National
Bureau of Standards, Washington, DC.

T B R

AGDiS ,éa-‘,';,;»;-mém




B . -

_*___UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)
REPORT COCUHENTATION PAGE erREAD INSTRUCTIONS
NUM 2. 3OVY ACCESSION NOJ| 3. iicmcn'r‘s CATALOG NUMBER
4. _TITLE (and Subtitle) 8 TYPE OF REPQORT & PERIQD CHOVERED

F ; s
g ICIENCY IN mﬁcm WILII'Y %SIGN QO_BLEMS?‘.\ rec;':é:;aia 2 ‘
€ . ‘!:’ . :s. wm
i —

§. CONTRA ANT NUMBER(a)

Cha mets
. |Francis
James F.|Lawrence

AM ELEMENT, PROJECT, TASK

AND ADORESS « PROGR
AREA & WORK UNIT NUMBERS

Industrial and Systems Engineering -
University of Florida

FL__32611 \
1. CONTROLLING OFFICE NAME AND ADDRRESS . RE
U.S. Army Research Office Augusegeae7 8 ‘

P.0. Box 12211

ngqni]s EEFE NC 22299 22
NITORIN N NAME & ADDRESS(il dilferent (rem Controlling Ottice) | 18. SECURITY CLASS. (ol thia report)

Unclassified
11“?@3;75ﬁ?ﬂi?ﬁiﬁ?BEWﬁEi?Eﬁﬂi"‘
N/A

6. OISTRIBUTION STATEMENT (of thie Ropeort)

Approved for public release; distribution unlimited

() 2%p | @RAME3> [

e | @5 er san |

18. SUPPLEMENTARY NCTES

esemr Th pPe F‘\‘\> J7

19. KEY WORDS (Continue on reverae olde If necessary and identily by block number)

Facility designs Contour sets
Efficiency Steiner-Weber functions

Multi-objective optimization

.IA—ASTlAC? (Continue en reverse side i necessary and ldentity by block number)
An example of a design might be a warehouse floor, represented by a set §,

of area A, but unspecified shape. Given m warehouse users, suppose user i
has a known disutility function fi such that Hi(S), the infegral of fi over
the set S (for example, a total travel distance), defines the disutility

of the design S to user i. For the vector H(S) with entries Hi(S), we study
the vector minimization problem over the set QH(S): S a designd, and call a
design efficient if and only if it solves this problem. Assuming a mild

regularity condition, we give necessary and sufficient conditions for a designfs

DD \ :2:“,‘ ]‘73 EDITION OF ! NOY €8 (3 OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF TNIS PAGE (When Data llc

P IRRRTRIAI (VW | —




T VT T T
.

RITY CLASSIFICATION OF THIS PAGE(™hen Dote Entored)

20. (cont'd)

to be efficient, as well as verifiable conditions for the regularity condi-
tion to hold., For the case where f; is the %, distance from warehouse dock i,
with 1 < p < a design is efficient if and only if it is essentially the
same as a contoyr set of some Steiner-Weber function, f) = Alfl + o+ + Apfm,
when the )\j are honnegative constants, not all zero.

ACCESSION for
NTIS White Section

ooe Buff Section 7
UNANNOUNSFD Q

JUSTHICATION e msmcmnd

- e

mmnmmm
mm I 4 i

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

e i

R A

L VAP




TABLE OF CONTENTS

T S SR N = e e S G PR e
SECTIONS
INtroduction .« « o v o v wiv sia a4 e s owe
Assumptions and Definitions . . . . . . . .
Necessary Conditions for Efficiency . . . .

Sufficient Conditions for Efficiency . . . .

Necessary and Sufficient Conditions for Efficiency

Sufficient Conditions for the S.R.C. to Hold . . . .

Acmmms L e S SRl N RRRC e TReNC SRR IGRe NN RS S TR AR LA TR U GRE S SR

nnmczs e e e & ¢ e e e e e e ° 8 e ° e e e e ° s e e =

10
11
15
16

Ty T

E | |
e
"‘




ABSTRACT
An example of a design might be a warehouse floor, represented by a set

S, of area A, but unspecified shape. Given m warehouse users, we suppose
user 1 has a known disutility function ti such that Hi(S). the integral of

f1 over the set S (for example, a total travel distance), defines the disutil-
ity of the design S to user i. For the vector H(S) with entries Hi(S). we
study the vector minimization problem over the set {H(S): S a design}, and
call a design efficient if and only if it solves this problem. Assuming a
mild regularity condition, we give necessary and sufficient conditions for

a design to be efficient, as well as verifiable conditions for the regularity

condition to hold. For the case where fi is the lp distance from warehouse

dock i, with 1 < p < =, a design is efficient if and only if it is essentially

the same as a contour set of some Steiner-Weber functionm, f = Ay + ove & mem,

A 1’1

when the Xi are nonnegative constants, not all zero.
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INTRODUCTION

We consider the problem of characterizing efficient designs. A "design"

may be a planar set of known total area A, but unspecified shape. Any de-
sign must be contained in some given planar set L. As an example of a design,
let S be a warehouse floor, and L be the lot of land in which the design will
lie. Assume the design will have m users, with user i having a disutility

function fi' where fi(x) is the disutility of the point x in S to user i. For

the warehouse problem fi(x) might be the distance (perhaps weighted by the

frequency of use) which user i must travel, or pay to have traveled, in order
to pick up an item stored at x.

For a given design S, define HI(S). for 1 < 1 < m, to be the integral of
the function fi over the set S, so that Hi(s) represents the total disutility
of the design S to customer i, while H(S) = (HI(S), G Hm(S))T represents
the disutility vector of the design S for all users. We call a design S*
efficient 1f whenever any design S satisfies H(S) < H(S*), then
iz must be true that H(S) = H(S*). An efficient design thus solves a multiple
objective optimization problem, and is Pareto optimal [10]. An evaluation of
a design as given by Hi(s) may occur when users are concerned about total dis-
utility. In the warehouse context the disutility of S to user i, Hi(SX might
be appropriate when the users have to pay for total operating costs, and
cannot agree upon a single-valued disutility function. The total operating
costs for a particular user might be taken as proportional to the total travel
distance due to storing this user's ttems in the warehouse. Alternatively,
under an equal likelihood assumption, that is, a random storage policy in a
warehouse (any item is equally likely to be stored at any location within the
warehouse), each total operating cost, when divided by the constant A, the

area of the warehouse, becomes an average operating cost. Under these
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circumstances, the problem under consideration is then one of minimizing the

vector of average operating costs incurred by the users due to item movement 3

3,j : within the warehouse. A third interpretation of the design problem is as a

multiple objective location problem where the design S is to be located, S

cannot be idealized as a point, and Bi(S) is an average distance of S from

"existing facility 1."

We remark that in many cases efficient designs should best be viewed as
design guidelines, rather than as final answers. Further, as is typically
the case with multiple objective optimization problems, many different designs
can be efficient, and the problem remains of choosing among such designs.
Nevertheless we feel that the knowledge of efficient designs should be of

value in helping to delimit the comparison of alternatives as well as to de-

fine more sharply the design problem(s) of interest.

To the best of our knowledge, the only research on the efficient design
problem for the case m > 1 is by Chalmet, Francis, and Lawrence (3],
where instead of the disutility of a design to user i being the integral of

a disutility function f1 over the design, the supremum of the disutility func-

tion fi over the design is used. They develop necessary and sufficient co?-
ditions for a design to be efficient, given very weak assumptions about the

disutility functions, and draw additional conclusions when the functions are
convex. For the case where m = 1, Francis [7] has studied a facility design
problem; a family of such problems is equivalent to the efficient design

problem we consider. The establishment of this equivalence is one of our

results. Corley and Roberts [4], as well as Lowe and Hurter [13] have con-
sidered somewhat similar design problems in regional partitioning and market
area contexts. Lowe and Hurter employ the concept of "flat spots" of functions.

This concept also arises in our analysis, although for different reasons.




On considering a design ¢to be a point, we
obtain the analogous problem of finding Pareto optimal
solutions for the vector (fl(x). e fn(x)). For this latter problem there
is, of course, a substantial literature ([10], [16], [18]), the discussion of
which is beyond the scope of this paper. We single out, however, the case
where each function fi is a "planar" zp distance from an existing facility
at location qi. say fi(x) = dp(x. qi). as this case is quite close in spirit
to the warehouse design problem, and has provided much of the impetus for the
study of the efficient design problem. For the case where the distances are
Euclidean, Kuhn [11] has demonstrated that the set of all Pareto optimal solu-
tions is just the convex hull of Qs cees Qe Subsequently Wendell, Hurter,
and Lowe [17] have studied the problem for the case where the distances are
lp distances, and concentrated upon developing an algorithm for finding all
Pareto optimal solutions when p = 1. Their work has in turn motivated work by
Chalmet and Francis, who give a geometrical solution procedure [l], as weil as
an order m log m algorithm [2] for the case p = 1.

We now give an overview of the paper. In Section 2, after introducing
some definitions and useful notation, we develop necessary conditions for a
design to be efficient. We show that if a design S* is efficient, then there
exists a nonzero column vector A with nonnegative entries, such that AIH(S*)
< ATH(S) for every design S. With M denoting the range of H, the set of all
vectors y such that y = H(S) for some design S, we introduce in Section 3 a
condition, called the Support Regularity Condition (S.R.C.). We say that M
satisfies the S.R.C. whenever every supporting hyperplane P of M, where P =
(x e E® : ATx = 8}, AeX®% 042 > 0, intersects M in a single point. We
subsequently show that when M satisfies the S.R.C., the necessary conditions

for efficiency, developed in Section 2, are also sufficient. Combining these




results, we obtain our main result of this paper in Section 3. Assuming the

S.R.C. holds, a design S* is efficient if and only if S* satisfies the condi- i
tion that there exists a nonzero column vector A with nonnegative entries such that
xru(s*) 5_XTH(S) for every design S. This condition can also be characterized
(equivalently) by the Neyman-Pearson Lemma. Assuming the S.R.C. holds, and
defining fx by fl = Alfl . RGN x‘fn. we show that a design S* is efficient
if and only if there exists a vector A\, 0 # A > 0, and a constant k such that
the following inequalities are true "almost everywhere" (that is, they are
true except possibly on sets of area zero): fx(x)_i k for x ¢ S*, and
£,(x) > k for x ¢ S*.

In Section 4, we identify sufficient conditions for the S.R.C. to hold.
We prove that if L is a convex set, if each function f1 is convex, and if
the set of all minimizing points of fA has area zero, for every )\ such that
0 ¢ \ >0, then the S.R.C. is satisfied, so that we can apply the results of
Section 3 to problems having these properties. In particular, if each f1
is some &p distance with 1 < p < =, then the S.R.C. holds. Further, fx
is just the function occurring in the Steiner-Weber problem (8], [11], with
the \, being the "weights." In this case a design S* is efficient if and

only if there exists a vector A\, O ¥ \ > 0, such that S* is a contour set

of the Steiner-Weber function fx almost everywhere.

In the analysis to follow we use Lebesgue measure theory. However, all
of the insight needed can be obtained by thinking of a measurable function as
an integrable function, and the measure of a set as the area (or volume, or

hypervolume) of a set.




1. ASSUMPTIONS AND DEFINITIONS

We assume we are given a nonempty set L which is a Lebesgue-measurable
subset of tn. with u(L) < =, where u(°) denotes the measure of a set. Further,

we are given real-valued measurable disutility functions £ NS

: Vojeoe m

which have domain L. For each i, 1 < i < m we assume that
I lfi(x)l dx < =,
L

Let A be a given constant with 0 < A < u(L), and define 2 design S to be a
subset of L, of measure A. Let 8 be the collection of all designs.

Given S ¢ O, we define

Ri(S) - I fi(x)dx 2 1<iz<m,

S
H(S) = (H,(S), +.., H_ (ST
1 ) A ] m .

We call H, (S) the total disutility of § to i, and H(S) the total disutility

vector of S.

In this paper we consider the problem of characterizing efficient designs.
A design S* ¢ & 1is called efficient if whenever a design S satis-
fies H(S) < H(S*), then it must be true that H(S) = H(S*). It is useful to

define M = H(&) to be the range of H.

2. NECESSARY CONDITIONS FOR EFFICIENCY

We first establish M is convex and compact; the development follows that
of Dantzig and Wald [35].
Lemma 1: M, the range of H, is convex and compact.

Proof: Define f et * 1, and given any measurable subset T of L, let

(1) = ( ] B I £ j A
.rl Tm.ruﬂ-l




As T varies over all measurable subsets of L, the corresponding éoints
Y(T) obtained comstitute a set, say M'. That is, M' is the range of y, when
the domain of y consists of all measurable subsets of L. A theorem due to
Lyapunov [14] (see also Lindenstrauss [12]) establishes that M' is both con-
vex and compact. Further, for any design S, we note that

v(s) = @7, v,

since

f = 3(S) = A
b

and

(I e [ £) = Hu(s)T.
g 1 g =

Denote by Y(M) the image of A under Y, {Y(S) : S ¢ &}, and denote by N’

the hyperplane

m+l

) €E : A}l.

JV'-{Y-(yl, Your *

* Yo' Yo+l
We observe that Y(»@) = M' A N', Since N' is closed and convex, and M' is
compact and convex, y() is compact and convex.

1

Now define the projection P from EM into E™ as follows:

P(Yl; sesy yml ym_’_l) o (yl’ s ey ym)T;

1 jato E®.

that is, P projects the first m entries of any vector in Em+
Because P is a projection, the image under P of any compact and convex set in
Bm'l is a compact and convex set in Em. Thus, in particular, P(Y(Q)) is com-

pact and convex. Clearly, M = P(Yy(S). O

Lemma 2. Given any design S, there exists an efficient design S* such that

H(S*) < H(S).




Proof: Given S ¢ &, let x = H(S), so that x ¢ M. Consider the following

minimization problem:

min Ay
subject to y e M, y<x
i.e. yeK={ueM:uc<xl},
where A ¢ E" is any vector having all positive entries. Since M is compact,
K is compact (and nonempty also, as x € K). The extreme value theorem now

implies there exists a vector y*, y* ¢ K, which solves the minimization pro-

blem. Now y* is efficient, in the sense that there is no z in K such that
z < y* and z ¥ y*; for if such a z exists then ATz < XTy*, giving a contra-
diction. Since y* ¢ M, there exists S* ¢ Ag such that y* = H(S*).

We claim that S* is efficient. Indeed, if § is an arbitrary design
in A&, then z = H(g) € M. If, moreover, H(é) < H(S*), then z < y* < x.
Thus z € K. As was seen above, z < y* implies z = y* and therefore
H(g) = H(S*), proving S* to be efficient. [

Let N be a closed coavex set in E" and let F(x) be a convex vector
mapping from N into Em, that is, a function from N into E™ such that
F(Ax + (1=1)y) < AF(x) + (1-A\)F(y) for every x, y € N and every ) for
which 0 < A < 1. A point x° in N is efficient if there exists no x in N
such that F(x) < F(x°) and F(x) ¥ F(x°).

The following statement is equivalent to Lemma 7.4.1 of Karlin [9].
Lemma 3. If x* is an efficient point then there exists a vector A ¢ Em,

with A ¥ 0, A > 0, such that

ATR(x%) < ATF(x)

for all x € N.




To apply this result to the efficient deaign problem, take N = M = R(&.

which we know to be convex (and compact as well). Take F(x) = x, clearly

a convex mapping. Then x*, x ¢ M and F(x) < F(x*) implies F(x) = F(x%),

g0 1f S*, S B, x* e H(SY, x = H(S), and H(S) < H(SY) then

H(S) = H(S*). Hence, we have the following necessary condition for efficiency.
Theorem 1. If S* ¢ 4 and S* is efficient, then there exists a vector

\ ¢ E', A #0, A >0, such that

\PH(s®) < ATH(s)

for all S ¢ l’.

Sl s g

et




3. SUFFICIENT CONDITIONS FOR EFFICIENCY

Theorem 1 gives a necessary condition for a design S* to be efficient.
We will now show that this condition is also sufficient, provided the range
M of H meets the following regularity condition.
Definition. We say that M = H(/A) satisfies the Support Regularity
Condition (S.R.C.) whenever every supporting hyperplane ¥ of M,
W oe(xeE: \Tx=8) ’
\ ¢ E", such that 0 ¢ A > 0, intersects M in a single point.

Theorem 2. Assume M satisfies the S.R,C. If there exists )\ ¢ Em.

0 # A 2> 0, such that with s* ¢ 4,

\TH(S®) < ATH(S) (1)

for every S ¢ A , then S* is an efficient design.
Proof. Let S ¢ A be such that H(S) < H(S*). We shall show H(S) = H(S®).

Since H(S) < H(S*), the hypotheses for A\ imply

ATH(S) < ATH(SW). (11)
Since (1) holds when S = S, (1) and (i) imply |
\Ties) = aTu(s™. (141) |
Let 8 = ATH(S®) and ¥ = (x : ATx = 8)}. Then (iii) implies H(S®) ¢ N , 3
so, with (1), we conclude W g a supporting hyperplane of M. Because
H(S®) ¢ M, ll(é) ¢ M, ¥ intersects M at H(S*) and H(é). Thus the S.R.C. implies
H(S®) = H(é). Hence, S* is efficient. ( H

We remark (in the spirit of the proof of Lemma 2 above) that if
N a {x Arx = 8} {s a supporting hyperplane of M, with every entry in
\ positive, such that S* in & satisfies \TH(S%) < \'n(S) for all S ¢ & ,
then it is also true that S* is efficient; hence, there are some cases when

a design S* arising in this way is efficient even if the S.R.C. does not

hold.
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4. NECESSARY AND SUFFICIENT CONDITIONS FOR EFFICIENCY

As a result of Theorems 1 and 2, we have
Theorem 3. Assume M satisfies the S.R.C. Then S* ¢ A i3 efficient if and

only if there exists A ¢ E, 0 ¢ A > 0, such that

ATH(s*) < ATH(S) , foralls e 4. (1)

For S ¢ 19 , we note, with A = (Al. AN h A-)T. that

T E n
\TH(s) = T ALH,(S) = ] ¢ at) e I £
qup 41 s 121 147 " g

n
where 2. Z Kol
A {=1 i1

Thus, the condition (1) is equivalent to

For known A\, Francis (7] has pointed out that the problem (2) may be solved
using the following letma, a special case of a result of Dantzig and Wald (5],
for the Neyman=-Pearson Lemma:

Lemma 4. The condition (2) is equivalent to the following condition (3):

there exists a number k such that

£,(x) <k for almost all  x ¢ S*
3)

£,(x) 2k for almost all x ¢ S,
(As is customary, for a condition to hold for "almost all" points in a set
means that the collection of all points in the set for which the condition
does not hold has measure zero. Likewise, for a condition to hold "almost
everywhere", abbreviated as a.e., means that the collection of all points

for which the condition does not hold has measure gero,)

10
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Theorem 3 and Lemma 3 together provide our main result:

Theorem 4. Assume M satisfies the S.R.C. Then S* ¢ A is efficient if and only

1f there exists A ¢ E', with 0 ¢ A > 0, and there exists k, such that

£,(x) <k for almost all X € S*

£,(x) >k for almost all  x ¢ S*,

5. SUFFICIENT CONDITIONS FOR THE S.R.C. TO HOLD

To obtain additional insight, we develop sufficient conditions for the
S.R.C. to hold, and show that the S.>.C. holds for a large class of funttions
fl’ s fm. We first introduce some useful notation. Let B = u(L),

0 <B <=, Let g be a real-valued measurable function defined on L. For
every real number k, define the following sets:
a(k) = {x e L : g(x) < k}
b(k) = {x e L : g(x) = k}, ab(k) = a(k) u b(k)
c(k) = {x ¢ L : g(x) > k}, be(k) = b(k) u c(k).
We call b(k) a contour line of g (of value k). We say that g has a flat spot
if some contour line of g has positive measure.
Lemma 5. Suppose g has no flat spot. If S is a measurable subset of L such
that
g(x) <k for almost all X €S
g(x) >k for almost all xeS=L~S§,
then S = ab(k) a.e.
Proof. The hypotheses for S imply S < ab(k) a.e. and S < be(k) a.e., so that
u(s) < u(ab(k)) (1)
and
u(8) < ue(k)).
Because u(b(k)) = 0,

u(s) < ule(k)). (11)

Hence

B = u(s) + u(s) < ulab(k)) + ule(k)) = B, (114)
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and so (1), (i1), and (1i1) give u(S) = u(ab(k)), u(8) = u(e(k)). Since i
S c ab(k) a.e and u(S) = p(ab(k)), S = ab(k) a.e. 0O

Lemma 6. Suppose g has no flat spots. If S° and S' both minimize I g over it
s i B

all S ¢ A, then S° = §' a.e.
Proof. Given the hypotheses, the converse of the Neyman-Pearson Lemma,
Theorem 3.1 of Dantzig and Wald [ 5], implies there exist k°, k' such that

$° c ab(k®) a.e., S° c be(k®) a.e.,

8" cab(k') a.e., §' © be(k') a.e..
Lemma ; implies S° = ab(k®) a.e. and S' = ab(k') a.e. Without loss of general-
ity, assume k® < k', so that ab(k®) < ab(k'). Since u(ab(k®)) = A = u(ab(k')),
ab(k®) = ab(k') a.e., 80 S® = ab(k') a.e. Hence S°®* = §' a.e. [
Lemma 7. If, for every ) ¢ Em. 0¢21r>0, fA has no flat spots, then the S.R.C.
is satisfied.
Proof. Let . {x ATx = 8} be any supporting hyperplane of M, with
0#X>0and 8 < ATy for all y ¢« M. Let ¥ intersect M at u and v, so
that ATu =0 = XTv and there exists S*, S' ¢ l’. such that u = H(S*),
v = H(S'). Given any S ¢ &, there exists y ¢ M, such that y = H(S),
and so ATH(S*) =g = ATH(S') =8 :.ATH(S). and hence S* and S' both minimize

[ fx. Lemma 6 thus implies S* = S' a.e. and hence
S

which means H(S*) = H(S'), that is, u = v, Hence W intersects M at a unique

point. O

We now consider the case where L is a given convex set in E" and g is a

convex function defined on L. For any real number k, define the set

'rk-{xtl.ag(x)j_k}.




Tk is convex. We denote the interior and boundary of Tk by 1nt(Tg) and
ark respectively.

The following result is known and readily proven:
Lemma 8. If for at least one interior point y of Ty g(y) = k, then g(2) = k
for every point 2z of Tk'
Corollary. If g(2) < k for some z ¢ T, then {x e L: g(x) =k} c T, .
Proof. By Lemma 8, if g(z) < k for some z in Tk' then g(y) < k for every
interior point y of Tk. Hence if x ¢ Tk and g(x) > k (equivalent to
g(x) = k), x is not an interior point of Tk’ and so is a boundary point of
Tpr 0
Lemma 9. If S is any convex (and measurable) set in En, the boundary of S
has measure zero.
Proof. See Eggleston [6], p. 73.
Theorem 5. Assume L and g are convex (and Lebesgue measurable). If the col-
lection of all minimizing points of g has measure zero, then g has no flat spots.
Proof. Let “ = {x €L : g(x) =k} be any contour line of g. Since u(¢) = 0,
u(2) = 0 if < = ¢, so assume < ¥ 4.

Consider the case where there exists no z ¢ Tk such that g(z) < k. In
this case '1'k «J » 8O every point in J is a minimizing point of g, and the
hypotheses for g then imply u(T,) = 0, so again, trivially, u(v) = 0,

In the remaining case there exists 2z ¢ Tk such that g(z) < k, so the

Corollary to Lemma 8 implies J < T Since T, is measurable and convex, ark

k' k
has measure zero by Lemma 9, in turn implying J has measure zero. (O
Corollary. If, for every A ¢ !‘. with 0 ¥ A > O, fx is convex, and the set of
all points minimizing fA has measure zero, then the S.R.C. is satisfied.

We remark that fx is (strictly) convex for all A\, 0 ¢ \ > 0 iff fl,.... fn
are (strictly) coanvex. Thus fl. covy f- strictly convex implies fx has at

most one minimizing point, implying in turn that the S.R.C. is satisfied.

“in gl
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For many problems of interest, we might have fi(x) - dp(x. qi)’ l<ic<m,

where dp(y, zZ), ¥, 2 € ln. represents the lp-dittlnc. between y and 2z, that is,
1

n -
v 2 =[] Iy -2lPP°.
P j=1 3
Kuhn [11] observed that for p = 2, in order to have alternative minima for

o
T
£, = 121 2@ (x, 9,), with A = (A, +.vy A" 20, and at least two ), positive,

the points Y (1 £ 1 < m) must be coliinear. Actually, this observation is
valid for any p with 1 < p < » (but may be invalid for p = 1 or for p = =,

P = = being the Tchebyshev distance case). In fact, fA is strictly convex

for any 1 < p < =, provided that the points ay (1 <1 <m) for which Ay > 0
are not collinear. When the points Qy for which Xi > 0 are contained in a line
A, fA is strictly convex except on A, is convex on A, and either has a unique
minimum or is minimal over a line segment contained in A. Hence for 1 < p < =,
fx is convex and the set of all points minimizing fA has measure zero, and so
the S.R.C. is satisfied. The foregoing result is for the case where at least
two A, are positive. If only one A

i i
minimum, and is convex, so that again the S.R.C. is satisfied.

is positive, fA clearly has a unique

From the discussion of the previous paragraph, when the fi are Lp
distances with 1 < p < », we can use Theorem 4 and Lemma 5 to conclude that
s* ¢ Q) is efficient if and only if there exists \ ¢ E® with 0 ¢ A > 0, and

there exists k, such that S* = {x ¢ L : £, (x) < k} a.e., that is, there exists

A ¢ E" with 0 ¢ X > O such that S* is some contour set of £, almost

everywhere.




This research was supported in part by the Interuniversity College for

Ph.D. Studies in Management Sciences (C.I.M.), Brussels, Belgium; by the Army
Research Office, Triangle Park, NC; by a National Academy of Sciences-
National Research Council Postdoctorate Associateship; and by the Operations
Research Division, National Bureau of Standards, Washington, DC.

We would like to thank R. E. Wendell for calling reference 9 to our atten-

tion.

15

i 00 o SN e e o




REFERENCES i i 3

1. Chalmet, L. G. and Francis, R. L., "A Geometrical Procedure for Finding
Efficient Solutions for Rectilinear Distance Location Problems," submitted
to AIIE Trans. (1978).

2. Chalmet, L. G. and Francis, R. L., "Finding Efficient Solutions for :
Rectilinear Distance Location Problems Efficiently," submitted to AIIE 3
Trans. (1978).

3. Chalmet, L. G., Francis, R. L. and Lawrence, J. F., "Efficiency in
Supremum Design Problems," working paper, Operations Research Division,
Center for Applied Mathematics, National Bureau of Standards, Washington, DC. (1978)

4. Corley, H. W. and Roberts, S. D., "A Partitioning Problem with Applications 1
in Regional Design," Opns. Res., 20, (1972), pp. 1010-1019. :

5. Dantzig, G. B. and Wald, A., "On the Fundamental Lemma of Neyman and
Pearson," Ann. of Math. Stat., 22, (1951), pp. 87-93.

6. Eggleston, H. G., Convexity, University Press, Cambridge, England (1969).

7. Francis, R. L., "Sufficient Conditions for Some Optimum - Property Facility
Designs," Opns. Res., 15, (1967), pp. 448-466.

8. Francis, R. L. and White, J. A., Facility Layout and Location: An Analytical
Approach, Prentice-Hall, Englewood Cliffs, New Jersey (1974).

9. Karlin, S.,, Mathematical Methods and Theory in Games, Programming, and
Economics, Vol. I, pp. 216-218, Addison-wcslcy, Reading, Mass. (1959).

10. Keeny, R. L. and Raiffa, H., Decisions with Multiple Objectives:
Preference and Value Trade-Offs, J. Wiley & Sons, New York (1976).

11. Kuhn, H. W., "On a Pair of Dual Nonlinear Problems," Nonlinear Programming,
J. Abadie (ed.), J. Wiley & Sons, Inc., New York (1967).

12. Lindenstrauss, J., "A Short Proof of Liapounoff's Convexity Theorem,"
J. of Math. and Mechanics, 15, (1966), pp. 971-972.

13. Lowe, T. J. and Hurter, A. P., "The Generalized Market Area Problem,"
Management Science, 22, (1976), pp. 1105-1115.

14. Lyapunov, A., "Sur les fonctions-vecteurs completdment additive,"
Izvestiya Akad. Nauk SSSR. Ser. Mat., 4 (1940), pp. 465-478.

15. Royden, H. L., Real Analysis, The Macmillan Co., New York (1963).

16. Starr, M. K. and Zeleny, M. (eds.), Multiple Criteria Decision Making,
TIMS Studies in the Management Sciences, Vol. 6, North-Holland,
Amsterdam (1977).

16




e LA e e T

e £ M 559 5 AN S e R b S N N S O RN e MDA Ml . i £ R 2428

17.

18.

Wendell, R. E., Hurter, A. P., Jr., and Lowe, T. J., "Efficient Points
in Location Problems," AIIE Trans., 9, (1977), pp. 238-246.

Wendell, R. E. and Lee, D. N., "Efficiency in Multiple Objective
Optimization Problems," Math. Prog., 12, (1977), pp. 406-414.

17




